Poly(NIPAM- co -MPS)-grafted multimodal porous silica nanoparticles as reverse thermoresponsive drug delivery system
نویسندگان
چکیده
منابع مشابه
Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system
PURPOSE Nanoparticles (NPs) that target bone tissue were developed using poly(lactic-co-glycolic acid) (PLGA) copolymers and tetracycline (TC)-based bone-targeting moieties. These NPs are expected to enable the transport of drugs, such as simvastatin (SIM), for the treatment of osteoporosis. METHODS The molecular structures of TC-PLGA were validated by (1)H-NMR, and the SIM-loaded NPs were pr...
متن کاملFunctionalized Mesoporous Silica Nanoparticles as a Novel Antioxidant Delivery System
Antioxidants have an important role in control and prevention of dangerous diseases like cancers, but instability and high solubility of the antioxidants are <span style="font-size: 11pt; color: #00000...
متن کاملMesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer
Even though cancer treatment has improved over the recent decades, still more specific and effective treatment concepts are mandatory. Surgical removal is not always possible, metastases are challenging and chemo- and radiotherapy can not only have severe side-effects but also resistances may occur. To cope with these challenges more efficient therapies with fewer side-effects are required. One...
متن کاملConstruction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers
Photolysis and poor solubility in water of Abamectin are key issues to be addressed, which causes low bioavailability and residual pollution. In this study, a novel hydrophilic delivery system through loading Abamectin with porous silica nanoparticles (Abam-PSNs) was developed in order to improve the chemical stability, dispersity, and the controlled release of Abamectin. These results suggest ...
متن کاملSynthesis of superparamagnetic magnetite nanoparticles for thermoresponsive drug delivery
Superparamagnetic magnetite nanoparticles (MNPs), Fe3O4, were synthesized via the modified coprecipitation method. The morphology of these MNPs is polyhedral. The particle size of MNPs ranged from 20 to 100 nm. For combined hyperthermia and thermoresponsive drug delivery applications, the heating element, MNPs, in the core of drug carriers should increase the temperature of the target up to 43 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Pharmaceutical Sciences
سال: 2017
ISSN: 1818-0876
DOI: 10.1016/j.ajps.2017.02.002